Antworten:
Unten gezeigt …
Erläuterung:
Nutzen Sie unsere Trig-Identitäten …
Faktor die linke Seite Ihres Problems …
Gegeben,
Bewiesen
Wie beweist man (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Siehe unten. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Wie verifizieren Sie die Identität sec ^ 4theta = 1 + 2tan ^ 2theta + tan ^ 4theta?
Beweis unten Zuerst beweisen wir 1 + tan ^ 2theta = sec ^ 2theta: sin ^ 2theta + cos ^ 2theta = 1 sin ^ 2theta / cos ^ 2theta + cos ^ 2theta / cos ^ 2theta = 1 / cos ^ 2theta tan ^ 2 theta + 1 = (1 / costheta) ^ 2 1 + tan ^ 2theta = sec ^ 2theta Nun können wir Ihre Frage beweisen: sec ^ 4theta = (sec ^ 2theta) ^ 2 = (1 + tan ^ 2theta) ^ 2 = 1 + 2tan ^ theta + tan ^ 4theta
Wie verifizieren Sie die Identität 3sec ^ 2thetatan ^ 2theta + 1 = sec ^ 6theta-tan ^ 6theta?
Siehe unten 3sec ^ 2thetatan ^ 2theta + 1 = sec ^ 6theta-tan ^ 6theta rechte Seite = sec ^ 6theta-tan ^ 6theta = (sec ^ 2theta) ^ 3- (tan ^ 2theta) ^ 3-> verwenden die Differenz zweier Würfel Formel = (sec ^ 2theta-tan ^ 2theta) (sec ^ 4theta + sec ^ 2thetatan ^ 2theta + tan ^ 4theta) = 1 * (sec ^ 4theta + sec ^ 2thetatan ^ 2theta + tan ^ 4theta) = sec ^ 4theta + sec 2thetatan ^ 2theta + tan ^ 4theta = sec ^ 2theta sec ^ 2 theta + sec ^ 2thetatan ^ 2theta + tan ^ 2 theta tan ^ 2 theta = sec ^ 2 theta (tan ^ 2 theta + 1) + sec ^ 2 thetatan ^ 2 theta + tan ^ 2theta (sec ^ 2theta-1) = sec ^ 2thetatan ^ 2theta + sec ^