Antworten:
Der Ursprung der Informationen
Erläuterung:
Zellen, die heute existieren, enthalten viele komplexe und spezifizierte Informationen. Diese Informationen werden verwendet, um die für das Leben notwendigen Proteine, Enzyme und Membranen aufzubauen.
Die in den vierziger Jahren des vergangenen Jahrhunderts entwickelten Informationsgesetze von Shannon weisen eindeutig darauf hin, dass die Entropiegesetze für Informationen gelten. Das Problem bei jeder Informationsübertragung besteht darin, dass die im System enthaltenen komplexen und spezifizierten Informationen dazu neigen, zu degenerieren. Lärm oder nicht spezifizierte Informationen nehmen zu.
Theorien spekulieren, dass lebende Organismen durch natürliche Auslese die Tendenz überwinden können, dass Informationen verloren gehen. Organismus mit den besten Informationen wird überleben und die Informationen an ihren Nachwuchs weitergeben. Organismen mit Mutationen, bei denen Informationen fehlen oder beschädigt sind, werden aussterben.
Das Problem ist, wie Informationen entstanden sind und erhalten wurden (sogar verbessert), bevor ein sich selbst replizierendes System existierte.
Natürliche Selektion kann nicht funktionieren, bis es selbstreplizierende Organismen zur Auswahl gibt.
Es wurden mehrere Theorien vorgestellt, zuerst DNA, zuerst Proteine, zuerst RNA, Tonkristalle und sogar Leben aus dem Weltall. Keine dieser Theorien konnte erklären, wie natürliche Ursachen und zufällige Unfälle die komplexen und spezifizierten Informationen hervorbringen konnten, die für den Beginn des Lebens erforderlich sind.
Wasser wird aus einem kegelförmigen Behälter mit einem Durchmesser von 10 Fuß und einer Tiefe von 10 Fuß mit einer konstanten Geschwindigkeit von 3 Fuß3 / min abgelassen. Wie schnell fällt der Wasserstand ab, wenn die Wassertiefe 6 Fuß beträgt?
Das Verhältnis des Radius r der oberen Wasseroberfläche zur Wassertiefe w ist eine Konstante, die von den Gesamtabmessungen des Kegels abhängt. R / w = 5/10 rarr r = w / 2 Das Volumen des Kegels von Wasser ergibt sich aus der Formel V (w, r) = pi / 3 r ^ 2w oder in Bezug auf gerade w für die gegebene Situation V (w) = pi / (12) w ^ 3 (dV) / (dw) = pi / 4w ^ 2 rarr (dw) / (dV) = 4 / (piw ^ 2) Wir erfahren, dass (dV) / (dt) = -3 (cu.ft./min.) (dw) / ( dt) = (dw) / (dV) * (dV) / (dt) = 4 / (piw ^ 2) * (- 3) = (- 12) / (piw ^ 2) Wenn w = 6 ist, ist die Wassertiefe Ändern mit einer Rate von (dw) / (dt)
Auf einer Maßstabszeichnung ist der Maßstab 1/4 Zoll = 1 Fuß. Welche Maße haben die Maßstabszeichnungen für einen Raum, der 18 Fuß mal 16 Fuß groß ist?
Nachfolgend finden Sie einen Lösungsprozess: In der Maßstabszeichnung heißt es: 1/4 "Zoll" = 1 "Fuß" Um zu ermitteln, wie viele Zoll die Raumlänge bei 18 Fuß beträgt, multiplizieren Sie jede Seite der Gleichung mit 18 18 xx 1/4 Zoll = 18 xx 1 Fuß 18/4 Zoll = 18 Fuß (16 + 2) / 4 Zoll = 18 Fuß (16/4 + 2/4) Zoll "= 18" Fuß "(4 + 1/2)" Zoll "= 18" Fuß "4 1/2" Zoll "= 18" Fuß "Um zu ermitteln, wie viele Zoll die Breite des Raumes bei 16 Fuß multipliziert, multiplizieren Sie Jede Seite
Eine Straßenlaterne befindet sich an der Spitze einer 15 Fuß hohen Stange. Eine 6 Fuß große Frau geht von der Stange mit einer Geschwindigkeit von 4 ft / sec auf einem geraden Weg. Wie schnell bewegt sich die Spitze ihres Schattens, wenn sie 50 Fuß von der Basis der Stange entfernt ist?
D '(t_0) = 20/3 = 6, bar6 ft / s Verwenden von Thales Proportionalitätssatz für die Dreiecke AhatOB, AhatZH Die Dreiecke sind ähnlich, da sie HatO = 90 °, HatZ = 90 ° und BhatAO gemeinsam haben. Wir haben (AZ) / (AO) = (HZ) / (OB) <=> ω / (ω + x) = 6/15 15w = 6 (ω + x) <15> = 6ω + 6x <=> 9ω = 6x <=> 3ω = 2x <=> ω = (2x) / 3 Es sei OA = d, dann sei d = ω + x = x + (2x) / 3 = (5x) / 3d (t) = (5x (t)) / 3d '(t) = (5x' (t)) / 3 Für t = t_0 gilt x '(t_0) = 4 ft / s. Daher ist d' (t_0) = (5x '( t_0)) / 3 <=> d '(t_0) = 20/3 = 6, bar6 ft